Generating Synthetic Data
MLJ has a set of functions - make_blobs
, make_circles
, make_moons
and make_regression
(closely resembling functions in scikit-learn of the same name) - for generating synthetic data sets. These are useful for testing machine learning models (e.g., testing user-defined composite models; see Composing Models)
Generating Gaussian blobs
MLJBase.make_blobs
— FunctionX, y = make_blobs(n=100, p=2; kwargs...)
Generate Gaussian blobs for clustering and classification problems.
Return value
By default, a table X
with p
columns (features) and n
rows (observations), together with a corresponding vector of n
Multiclass
target observations y
, indicating blob membership.
Keyword arguments
shuffle=true
: whether to shuffle the resulting points,centers=3
: either a number of centers or ac x p
matrix withc
pre-determined centers,cluster_std=1.0
: the standard deviation(s) of each blob,center_box=(-10. => 10.)
: the limits of thep
-dimensional cube within which the cluster centers are drawn if they are not provided,eltype=Float64
: machine type of points (any subtype ofAbstractFloat
).rng=Random.GLOBAL_RNG
: anyAbstractRNG
object, or integer to seed aMersenneTwister
(for reproducibility).as_table=true
: whether to return the points as a table (true) or a matrix (false). Iffalse
the targety
has integer element type.
Example
X, y = make_blobs(100, 3; centers=2, cluster_std=[1.0, 3.0])
using MLJ, DataFrames
X, y = make_blobs(100, 3; centers=2, cluster_std=[1.0, 3.0])
dfBlobs = DataFrame(X)
dfBlobs.y = y
first(dfBlobs, 3)
Row | x1 | x2 | x3 | y |
---|---|---|---|---|
Float64 | Float64 | Float64 | Cat… | |
1 | -0.0786179 | -3.71095 | 4.0855 | 2 |
2 | -1.46158 | -4.63669 | -0.441678 | 2 |
3 | 0.884981 | -13.1114 | 3.23165 | 2 |
using VegaLite
dfBlobs |> @vlplot(:point, x=:x1, y=:x2, color = :"y:n")
dfBlobs |> @vlplot(:point, x=:x1, y=:x3, color = :"y:n")
Generating concentric circles
MLJBase.make_circles
— FunctionX, y = make_circles(n=100; kwargs...)
Generate n
labeled points close to two concentric circles for classification and clustering models.
Return value
By default, a table X
with 2
columns and n
rows (observations), together with a corresponding vector of n
Multiclass
target observations y
. The target is either 0
or 1
, corresponding to membership to the smaller or larger circle, respectively.
Keyword arguments
shuffle=true
: whether to shuffle the resulting points,noise=0
: standard deviation of the Gaussian noise added to the data,factor=0.8
: ratio of the smaller radius over the larger one,
eltype=Float64
: machine type of points (any subtype ofAbstractFloat
).rng=Random.GLOBAL_RNG
: anyAbstractRNG
object, or integer to seed aMersenneTwister
(for reproducibility).as_table=true
: whether to return the points as a table (true) or a matrix (false). Iffalse
the targety
has integer element type.
Example
X, y = make_circles(100; noise=0.5, factor=0.3)
using MLJ, DataFrames
X, y = make_circles(100; noise=0.05, factor=0.3)
dfCircles = DataFrame(X)
dfCircles.y = y
first(dfCircles, 3)
Row | x1 | x2 | y |
---|---|---|---|
Float64 | Float64 | Cat… | |
1 | -0.184067 | -0.213579 | 0 |
2 | -0.730049 | 0.809744 | 1 |
3 | 0.292948 | 0.942866 | 1 |
using VegaLite
dfCircles |> @vlplot(:circle, x=:x1, y=:x2, color = :"y:n")
Sampling from two interleaved half-circles
MLJBase.make_moons
— Function make_moons(n::Int=100; kwargs...)
Generates labeled two-dimensional points lying close to two interleaved semi-circles, for use with classification and clustering models.
Return value
By default, a table X
with 2
columns and n
rows (observations), together with a corresponding vector of n
Multiclass
target observations y
. The target is either 0
or 1
, corresponding to membership to the left or right semi-circle.
Keyword arguments
shuffle=true
: whether to shuffle the resulting points,noise=0.1
: standard deviation of the Gaussian noise added to the data,xshift=1.0
: horizontal translation of the second center with respect to the first one.yshift=0.3
: vertical translation of the second center with respect to the first one.eltype=Float64
: machine type of points (any subtype ofAbstractFloat
).rng=Random.GLOBAL_RNG
: anyAbstractRNG
object, or integer to seed aMersenneTwister
(for reproducibility).as_table=true
: whether to return the points as a table (true) or a matrix (false). Iffalse
the targety
has integer element type.
Example
X, y = make_moons(100; noise=0.5)
using MLJ, DataFrames
X, y = make_moons(100; noise=0.05)
dfHalfCircles = DataFrame(X)
dfHalfCircles.y = y
first(dfHalfCircles, 3)
Row | x1 | x2 | y |
---|---|---|---|
Float64 | Float64 | Cat… | |
1 | 0.055737 | 1.04537 | 0 |
2 | 0.672658 | 0.763007 | 0 |
3 | 1.17358 | -0.600804 | 1 |
using VegaLite
dfHalfCircles |> @vlplot(:circle, x=:x1, y=:x2, color = :"y:n")
Regression data generated from noisy linear models
MLJBase.make_regression
— Functionmake_regression(n, p; kwargs...)
Generate Gaussian input features and a linear response with Gaussian noise, for use with regression models.
Return value
By default, a tuple (X, y)
where table X
has p
columns and n
rows (observations), together with a corresponding vector of n
Continuous
target observations y
.
Keywords
intercept=true
: Whether to generate data from a model with intercept.n_targets=1
: Number of columns in the target.sparse=0
: Proportion of the generating weight vector that is sparse.noise=0.1
: Standard deviation of the Gaussian noise added to the response (target).outliers=0
: Proportion of the response vector to make as outliers by adding a random quantity with high variance. (Only applied ifbinary
isfalse
.)as_table=true
: WhetherX
(andy
, ifn_targets > 1
) should be a table or a matrix.eltype=Float64
: Element type forX
andy
. Must subtypeAbstractFloat
.binary=false
: Whether the target should be binarized (via a sigmoid).eltype=Float64
: machine type of points (any subtype ofAbstractFloat
).rng=Random.GLOBAL_RNG
: anyAbstractRNG
object, or integer to seed aMersenneTwister
(for reproducibility).as_table=true
: whether to return the points as a table (true) or a matrix (false).
Example
X, y = make_regression(100, 5; noise=0.5, sparse=0.2, outliers=0.1)
using MLJ, DataFrames
X, y = make_regression(100, 5; noise=0.5, sparse=0.2, outliers=0.1)
dfRegression = DataFrame(X)
dfRegression.y = y
first(dfRegression, 3)
Row | x1 | x2 | x3 | x4 | x5 | y |
---|---|---|---|---|---|---|
Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | -0.439691 | 1.17544 | -0.926723 | -1.64269 | 0.402373 | -0.329177 |
2 | 0.609409 | -1.0798 | -2.04722 | -0.199065 | -1.07345 | -21.7533 |
3 | 0.436198 | 0.349519 | -0.181917 | -1.86466 | 0.90212 | -0.750613 |