Generating Synthetic Data
MLJ has a set of functions - make_blobs
, make_circles
, make_moons
and make_regression
(closely resembling functions in scikit-learn of the same name) - for generating synthetic data sets. These are useful for testing machine learning models (e.g., testing user-defined composite models; see Composing Models)
Generating Gaussian blobs
MLJBase.make_blobs
— FunctionX, y = make_blobs(n=100, p=2; kwargs...)
Generate Gaussian blobs for clustering and classification problems.
Return value
By default, a table X
with p
columns (features) and n
rows (observations), together with a corresponding vector of n
Multiclass
target observations y
, indicating blob membership.
Keyword arguments
shuffle=true
: whether to shuffle the resulting points,centers=3
: either a number of centers or ac x p
matrix withc
pre-determined centers,cluster_std=1.0
: the standard deviation(s) of each blob,center_box=(-10. => 10.)
: the limits of thep
-dimensional cube within which the cluster centers are drawn if they are not provided,eltype=Float64
: machine type of points (any subtype ofAbstractFloat
).rng=nothing
: anyAbstractRNG
object, or integer to seed aMersenneTwister
(for reproducibility).as_table=true
: whether to return the points as a table (true) or a matrix (false). Iffalse
the targety
has integer element type.
Example
X, y = make_blobs(100, 3; centers=2, cluster_std=[1.0, 3.0])
using MLJ, DataFrames
X, y = make_blobs(100, 3; centers=2, cluster_std=[1.0, 3.0])
dfBlobs = DataFrame(X)
dfBlobs.y = y
first(dfBlobs, 3)
x1 | x2 | x3 | y | |
---|---|---|---|---|
Float64 | Float64 | Float64 | Cat… | |
1 | 6.41012 | -0.132041 | -1.31859 | 2 |
2 | 9.05849 | -0.565927 | 6.44145 | 1 |
3 | 8.44647 | -2.41558 | 5.63878 | 1 |
using VegaLite
dfBlobs |> @vlplot(:point, x=:x1, y=:x2, color = :"y:n")
dfBlobs |> @vlplot(:point, x=:x1, y=:x3, color = :"y:n")
Generating concentric circles
MLJBase.make_circles
— FunctionX, y = make_circles(n=100; kwargs...)
Generate n
labeled points close to two concentric circles for classification and clustering models.
Return value
By default, a table X
with 2
columns and n
rows (observations), together with a corresponding vector of n
Multiclass
target observations y
. The target is either 0
or 1
, corresponding to membership to the smaller or larger circle, respectively.
Keyword arguments
shuffle=true
: whether to shuffle the resulting points,noise=0
: standard deviation of the Gaussian noise added to the data,factor=0.8
: ratio of the smaller radius over the larger one,
eltype=Float64
: machine type of points (any subtype ofAbstractFloat
).rng=nothing
: anyAbstractRNG
object, or integer to seed aMersenneTwister
(for reproducibility).as_table=true
: whether to return the points as a table (true) or a matrix (false). Iffalse
the targety
has integer element type.
Example
X, y = make_circles(100; noise=0.5, factor=0.3)
using MLJ, DataFrames
X, y = make_circles(100; noise=0.05, factor=0.3)
dfCircles = DataFrame(X)
dfCircles.y = y
first(dfCircles, 3)
x1 | x2 | y | |
---|---|---|---|
Float64 | Float64 | Cat… | |
1 | -0.604324 | 0.844941 | 1 |
2 | 0.837545 | -0.573469 | 1 |
3 | -0.901325 | -0.0943015 | 1 |
using VegaLite
dfCircles |> @vlplot(:circle, x=:x1, y=:x2, color = :"y:n")
Sampling from two interleaved half-circles
MLJBase.make_moons
— Function make_moons(n::Int=100; kwargs...)
Generates labeled two-dimensional points lying close to two interleaved semi-circles, for use with classification and clustering models.
Return value
By default, a table X
with 2
columns and n
rows (observations), together with a corresponding vector of n
Multiclass
target observations y
. The target is either 0
or 1
, corresponding to membership to the left or right semi-circle.
Keyword arguments
shuffle=true
: whether to shuffle the resulting points,noise=0.1
: standard deviation of the Gaussian noise added to the data,xshift=1.0
: horizontal translation of the second center with respect to the first one.yshift=0.3
: vertical translation of the second center with respect to the first one.eltype=Float64
: machine type of points (any subtype ofAbstractFloat
).rng=nothing
: anyAbstractRNG
object, or integer to seed aMersenneTwister
(for reproducibility).as_table=true
: whether to return the points as a table (true) or a matrix (false). Iffalse
the targety
has integer element type.
Example
X, y = make_moons(100; noise=0.5)
using MLJ, DataFrames
X, y = make_moons(100; noise=0.05)
dfHalfCircles = DataFrame(X)
dfHalfCircles.y = y
first(dfHalfCircles, 3)
x1 | x2 | y | |
---|---|---|---|
Float64 | Float64 | Cat… | |
1 | -1.07053 | 0.180436 | 0 |
2 | 0.850911 | 0.463272 | 0 |
3 | 0.119531 | -0.158257 | 1 |
using VegaLite
dfHalfCircles |> @vlplot(:circle, x=:x1, y=:x2, color = :"y:n")
Regression data generated from noisy linear models
MLJBase.make_regression
— Functionmake_regression(n, p; kwargs...)
Generate Gaussian input features and a linear response with Gaussian noise, for use with regression models.
Return value
By default, a table X
with p
columns and n
rows (observations), together with a corresponding vector of n
Continuous
target observations y
.
Keywords
`intercept=true: whether to generate data from a model with intercept,
sparse=0
: portion of the generating weight vector that is sparse,noise=0.1
: standard deviation of the Gaussian noise added to the response,outliers=0
: portion of the response vector to make as outliers by adding a random quantity with high variance. (Only applied ifbinary
isfalse
)binary=false
: whether the target should be binarized (via a sigmoid).eltype=Float64
: machine type of points (any subtype ofAbstractFloat
).rng=nothing
: anyAbstractRNG
object, or integer to seed aMersenneTwister
(for reproducibility).as_table=true
: whether to return the points as a table (true) or a matrix (false).
Example
X, y = make_regression(100, 5; noise=0.5, sparse=0.2, outliers=0.1)
using MLJ, DataFrames
X, y = make_regression(100, 5; noise=0.5, sparse=0.2, outliers=0.1)
dfRegression = DataFrame(X)
dfRegression.y = y
first(dfRegression, 3)
x1 | x2 | x3 | x4 | x5 | y | |
---|---|---|---|---|---|---|
Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | -0.933411 | 0.822363 | 0.383515 | 0.0350509 | 1.13136 | -1.25934 |
2 | -1.18283 | -0.899156 | 1.1909 | -2.06522 | 1.58678 | 0.46584 |
3 | 0.0193861 | 0.922482 | 1.58423 | 0.002129 | 0.398681 | -1.09712 |