XGBoostRegressor
XGBoostRegressorA model type for constructing a eXtreme Gradient Boosting Regressor, based on XGBoost.jl, and implementing the MLJ model interface.
From MLJ, the type can be imported using
XGBoostRegressor = @load XGBoostRegressor pkg=XGBoostDo model = XGBoostRegressor() to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in XGBoostRegressor(test=...).
Univariate continuous regression using xgboost.
Training data
In MLJ or MLJBase, bind an instance model to data with
m = machine(model, X, y)where
X: any table of input features whose columns haveContinuouselement scitype; check column scitypes withschema(X).y: is anAbstractVectortarget withContinuouselements; check the scitype withscitype(y).
Train using fit!(m, rows=...).
Hyper-parameters
See https://xgboost.readthedocs.io/en/stable/parameter.html.