XGBoostCount
XGBoostCountA model type for constructing a eXtreme Gradient Boosting Count Regressor, based on XGBoost.jl, and implementing the MLJ model interface.
From MLJ, the type can be imported using
XGBoostCount = @load XGBoostCount pkg=XGBoostDo model = XGBoostCount() to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in XGBoostCount(test=...).
Univariate discrete regression using xgboost.
Training data
In MLJ or MLJBase, bind an instance model to data with
m = machine(model, X, y)where
X: any table of input features, either anAbstractMatrixor Tables.jl-compatible table.y: is anAbstractVectorcontinuous target.
Train using fit!(m, rows=...).
Hyper-parameters
See https://xgboost.readthedocs.io/en/stable/parameter.html.