RandomForestRegressor
RandomForestRegressor
A model type for constructing a random forest regressor, based on MLJScikitLearnInterface.jl, and implementing the MLJ model interface.
From MLJ, the type can be imported using
RandomForestRegressor = @load RandomForestRegressor pkg=MLJScikitLearnInterface
Do model = RandomForestRegressor()
to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in RandomForestRegressor(n_estimators=...)
.
A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the max_samples
parameter if bootstrap=True
(default), otherwise the whole dataset is used to build each tree.