MultiTaskElasticNetCVRegressor
MultiTaskElasticNetCVRegressorA model type for constructing a multi-target elastic net regressor with built-in cross-validation, based on MLJScikitLearnInterface.jl, and implementing the MLJ model interface.
From MLJ, the type can be imported using
MultiTaskElasticNetCVRegressor = @load MultiTaskElasticNetCVRegressor pkg=MLJScikitLearnInterfaceDo model = MultiTaskElasticNetCVRegressor() to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in MultiTaskElasticNetCVRegressor(l1_ratio=...).
Hyper-parameters
l1_ratio = 0.5eps = 0.001n_alphas = 100alphas = nothingfit_intercept = truemax_iter = 1000tol = 0.0001cv = 5copy_X = trueverbose = 0n_jobs = nothingrandom_state = nothingselection = cyclic