GaussianProcessRegressor
GaussianProcessRegressorA model type for constructing a Gaussian process regressor, based on MLJScikitLearnInterface.jl, and implementing the MLJ model interface.
From MLJ, the type can be imported using
GaussianProcessRegressor = @load GaussianProcessRegressor pkg=MLJScikitLearnInterfaceDo model = GaussianProcessRegressor() to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in GaussianProcessRegressor(kernel=...).
Hyper-parameters
kernel = nothingalpha = 1.0e-10optimizer = fmin_l_bfgs_bn_restarts_optimizer = 0normalize_y = falsecopy_X_train = truerandom_state = nothing