ElasticNetRegressor
ElasticNetRegressor
A model type for constructing a elastic net regressor, based on MLJScikitLearnInterface.jl, and implementing the MLJ model interface.
From MLJ, the type can be imported using
ElasticNetRegressor = @load ElasticNetRegressor pkg=MLJScikitLearnInterface
Do model = ElasticNetRegressor()
to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in ElasticNetRegressor(alpha=...)
.
Hyper-parameters
alpha = 1.0
l1_ratio = 0.5
fit_intercept = true
precompute = false
max_iter = 1000
copy_X = true
tol = 0.0001
warm_start = false
positive = false
random_state = nothing
selection = cyclic