ElasticNetRegressor
ElasticNetRegressorA model type for constructing a elastic net regressor, based on MLJScikitLearnInterface.jl, and implementing the MLJ model interface.
From MLJ, the type can be imported using
ElasticNetRegressor = @load ElasticNetRegressor pkg=MLJScikitLearnInterfaceDo model = ElasticNetRegressor() to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in ElasticNetRegressor(alpha=...).
Hyper-parameters
alpha = 1.0l1_ratio = 0.5fit_intercept = trueprecompute = falsemax_iter = 1000copy_X = truetol = 0.0001warm_start = falsepositive = falserandom_state = nothingselection = cyclic