SGDRegressor
SGDRegressorA model type for constructing a stochastic gradient descent-based regressor, based on MLJScikitLearnInterface.jl, and implementing the MLJ model interface.
From MLJ, the type can be imported using
SGDRegressor = @load SGDRegressor pkg=MLJScikitLearnInterfaceDo model = SGDRegressor() to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in SGDRegressor(loss=...).
Hyper-parameters
loss = squared_errorpenalty = l2alpha = 0.0001l1_ratio = 0.15fit_intercept = truemax_iter = 1000tol = 0.001shuffle = trueverbose = 0epsilon = 0.1random_state = nothinglearning_rate = invscalingeta0 = 0.01power_t = 0.25early_stopping = falsevalidation_fraction = 0.1n_iter_no_change = 5warm_start = falseaverage = false