RandomForestClassifier
RandomForestClassifierA model type for constructing a random forest classifier, based on MLJScikitLearnInterface.jl, and implementing the MLJ model interface.
From MLJ, the type can be imported using
RandomForestClassifier = @load RandomForestClassifier pkg=MLJScikitLearnInterfaceDo model = RandomForestClassifier() to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in RandomForestClassifier(n_estimators=...).
A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the max_samples parameter if bootstrap=True (default), otherwise the whole dataset is used to build each tree.