PassiveAggressiveRegressor
PassiveAggressiveRegressorA model type for constructing a passive aggressive regressor, based on MLJScikitLearnInterface.jl, and implementing the MLJ model interface.
From MLJ, the type can be imported using
PassiveAggressiveRegressor = @load PassiveAggressiveRegressor pkg=MLJScikitLearnInterfaceDo model = PassiveAggressiveRegressor() to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in PassiveAggressiveRegressor(C=...).
Hyper-parameters
C = 1.0fit_intercept = truemax_iter = 1000tol = 0.0001early_stopping = falsevalidation_fraction = 0.1n_iter_no_change = 5shuffle = trueverbose = 0loss = epsilon_insensitiveepsilon = 0.1random_state = nothingwarm_start = falseaverage = false