ElasticNetCVRegressor
ElasticNetCVRegressorA model type for constructing a elastic net regression with built-in cross-validation, based on MLJScikitLearnInterface.jl, and implementing the MLJ model interface.
From MLJ, the type can be imported using
ElasticNetCVRegressor = @load ElasticNetCVRegressor pkg=MLJScikitLearnInterfaceDo model = ElasticNetCVRegressor() to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in ElasticNetCVRegressor(l1_ratio=...).
Hyper-parameters
l1_ratio = 0.5eps = 0.001n_alphas = 100alphas = nothingfit_intercept = trueprecompute = automax_iter = 1000tol = 0.0001cv = 5copy_X = trueverbose = 0n_jobs = nothingpositive = falserandom_state = nothingselection = cyclic