BayesianRidgeRegressor
BayesianRidgeRegressorA model type for constructing a Bayesian ridge regressor, based on MLJScikitLearnInterface.jl, and implementing the MLJ model interface.
From MLJ, the type can be imported using
BayesianRidgeRegressor = @load BayesianRidgeRegressor pkg=MLJScikitLearnInterfaceDo model = BayesianRidgeRegressor() to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in BayesianRidgeRegressor(max_iter=...).
Hyper-parameters
max_iter = 300tol = 0.001alpha_1 = 1.0e-6alpha_2 = 1.0e-6lambda_1 = 1.0e-6lambda_2 = 1.0e-6compute_score = falsefit_intercept = truecopy_X = trueverbose = false