List of Supported Models

For a list of models organized around function ("classification", "regression", etc.), see the Model Browser.

MLJ provides access to a wide variety of machine learning models. We are always looking for help adding new models or testing existing ones. Currently available models are listed below; for the most up-to-date list, run using MLJ; models().

Indications of "maturity" in the table below are approximate, surjective, and possibly out-of-date. A decision to use or not use a model in a critical application should be based on a user's independent assessment.

  • experimental: indicates the package is fairly new and/or is under active development; you can help by testing these packages and making them more robust,
  • low: indicate a package that has reached a roughly stable form in terms of interface and which is unlikely to contain serious bugs. It may be missing some functionality found in similar packages. It has not benefited from a high level of use
  • medium: indicates the package is fairly mature but may benefit from optimizations and/or extra features; you can help by suggesting either,
  • high: indicates the package is very mature and functionalities are expected to have been fairly optimiser and tested.
PackageInterface PkgModelsMaturityNote
BetaML.jl-DecisionTreeClassifier, RandomForestClassifier, NeuralNetworkClassifier, PerceptronClassifier, KernelPerceptronClassifier, PegasosClassifier, DecisionTreeRegressor, RandomForestRegressor, NeuralNetworkRegressor, MultitargetNeuralNetworkRegressor, GaussianMixtureRegressor, MultitargetGaussianMixtureRegressor, KMeansClusterer, KMedoidsClusterer, GaussianMixtureClusterer, SimpleImputer, GaussianMixtureImputer, RandomForestImputer, GeneralImputer, AutoEncodermedium
CatBoost.jl-CatBoostRegressor, CatBoostClassifierhigh
Clustering.jlMLJClusteringInterface.jlKMeans, KMedoids, AffinityPropagation, DBSCAN, HierarchicalClusteringhigh²
DecisionTree.jlMLJDecisionTreeInterface.jlDecisionTreeClassifier, DecisionTreeRegressor, AdaBoostStumpClassifier, RandomForestClassifier, RandomForestRegressorhigh
EvoTrees.jl-EvoTreeRegressor, EvoTreeClassifier, EvoTreeCount, EvoTreeGaussian, EvoTreeMLEmediumtree-based gradient boosting models
EvoLinear.jl-EvoLinearRegressormediumlinear boosting models
GLM.jlMLJGLMInterface.jlLinearRegressor, LinearBinaryClassifier, LinearCountRegressormedium²
Imbalance.jl-RandomOversampler, RandomWalkOversampler, ROSE, SMOTE, BorderlineSMOTE1, SMOTEN, SMOTENC, RandomUndersampler, ClusterUndersampler, ENNUndersampler, TomekUndersampler,low
LIBSVM.jlMLJLIBSVMInterface.jlLinearSVC, SVC, NuSVC, NuSVR, EpsilonSVR, OneClassSVMhighalso via ScikitLearn.jl
LightGBM.jl-LGBMClassifier, LGBMRegressorhigh
FeatureSelector.jl-FeatureSelector, RecursiveFeatureEliminationlow
Flux.jlMLJFlux.jlNeuralNetworkRegressor, NeuralNetworkClassifier, MultitargetNeuralNetworkRegressor, ImageClassifierlow
MLJBalancing.jl-BalancedBaggingClassifierlow
MLJLinearModels.jl-LinearRegressor, RidgeRegressor, LassoRegressor, ElasticNetRegressor, QuantileRegressor, HuberRegressor, RobustRegressor, LADRegressor, LogisticClassifier, MultinomialClassifiermedium
MLJModels.jl (built-in)-ConstantClassifier, ConstantRegressor, ContinuousEncoder, DeterministicConstantClassifier, DeterministicConstantRegressor, FillImputer, InteractionTransformer, OneHotEncoder, Standardizer, UnivariateBoxCoxTransformer, UnivariateDiscretizer, UnivariateFillImputer, UnivariateTimeTypeToContinuous, Standardizer, BinaryThreshholdPredictormedium
MLJText.jl-TfidfTransformer, BM25Transformer, CountTransformerlow
MultivariateStats.jlMLJMultivariateStatsInterface.jlLinearRegressor, MultitargetLinearRegressor, RidgeRegressor, MultitargetRidgeRegressor, PCA, KernelPCA, ICA, LDA, BayesianLDA, SubspaceLDA, BayesianSubspaceLDA, FactorAnalysis, PPCAhigh
NaiveBayes.jlMLJNaiveBayesInterface.jlGaussianNBClassifier, MultinomialNBClassifier, HybridNBClassifierlow
NearestNeighborModels.jl-KNNClassifier, KNNRegressor, MultitargetKNNClassifier, MultitargetKNNRegressorhigh
OneRule.jl-OneRuleClassifierexperimental
OutlierDetectionNeighbors.jl-ABODDetector, COFDetector, DNNDetector, KNNDetector, LOFDetectormedium
OutlierDetectionNetworks.jl-AEDetector, DSADDetector, ESADDetectormedium
OutlierDetectionPython.jl-ABODDetector, CBLOFDetector, CDDetector, COFDetector, COPODDetector, ECODDetector, GMMDetector, HBOSDetector, IForestDetector, INNEDetector, KDEDetector, KNNDetector, LMDDDetector, LOCIDetector, LODADetector, LOFDetector, MCDDetector, OCSVMDetector, PCADetector, RODDetector, SODDetector, SOSDetectorhigh
ParallelKMeans.jl-KMeansexperimental
PartialLeastSquaresRegressor.jl-PLSRegressor, KPLSRegressorexperimental
PartitionedLS.jl-PartLSlow
ScikitLearn.jlMLJScikitLearnInterface.jlARDRegressor, AdaBoostClassifier, AdaBoostRegressor, AffinityPropagation, AgglomerativeClustering, BaggingClassifier, BaggingRegressor, BayesianLDA, BayesianQDA, BayesianRidgeRegressor, BernoulliNBClassifier, Birch, ComplementNBClassifier, DBSCAN, DummyClassifier, DummyRegressor, ElasticNetCVRegressor, ElasticNetRegressor, ExtraTreesClassifier, ExtraTreesRegressor, FeatureAgglomeration, GaussianNBClassifier, GaussianProcessClassifier, GaussianProcessRegressor, GradientBoostingClassifier, GradientBoostingRegressor, HuberRegressor, KMeans, KNeighborsClassifier, KNeighborsRegressor, LarsCVRegressor, LarsRegressor, LassoCVRegressor, LassoLarsCVRegressor, LassoLarsICRegressor, LassoLarsRegressor, LassoRegressor, LinearRegressor, LogisticCVClassifier, LogisticClassifier, MeanShift, MiniBatchKMeans, MultiTaskElasticNetCVRegressor, MultiTaskElasticNetRegressor, MultiTaskLassoCVRegressor, MultiTaskLassoRegressor, MultinomialNBClassifier, OPTICS, OrthogonalMatchingPursuitCVRegressor, OrthogonalMatchingPursuitRegressor, PassiveAggressiveClassifier, PassiveAggressiveRegressor, PerceptronClassifier, ProbabilisticSGDClassifier, RANSACRegressor, RandomForestClassifier, RandomForestRegressor, RidgeCVClassifier, RidgeCVRegressor, RidgeClassifier, RidgeRegressor, SGDClassifier, SGDRegressor, SVMClassifier, SVMLClassifier, SVMLRegressor, SVMNuClassifier, SVMNuRegressor, SVMRegressor, SpectralClustering, TheilSenRegressorhigh²
SIRUS.jl-StableForestClassifier, StableForestRegressor, StableRulesClassifier, StableRulesRegressorlow
SymbolicRegression.jl-MultitargetSRRegressor, SRRegressorexperimental
TSVD.jlMLJTSVDInterface.jlTSVDTransformerhigh
XGBoost.jlMLJXGBoostInterface.jlXGBoostRegressor, XGBoostClassifier, XGBoostCounthigh

Notes

¹Models not in the MLJ registry are not included in integration tests. Consult package documentation to see how to load them. There may be issues loading these models simultaneously with other registered models.

²Some models are missing and assistance is welcome to complete the interface. Post a message on the Julia #mlj Slack channel if you would like to help, thanks!