Types
MLFlowClient.MLFlow
— TypeMLFlow
Base type which defines location and version for MLFlow API service.
Fields
apiroot::String
: API root URL, e.g.http://localhost:5000/api
apiversion::Union{Integer, AbstractFloat}
: used API version, e.g.2.0
headers::Dict
: HTTP headers to be provided with the REST API requests.username::Union{Nothing, String}
: username for basic authentication.password::Union{Nothing, String}
: password for basic authentication.
You cannot provide an Authorization
header when an username
and password
are provided. An error will be thrown in that case.
- If
MLFLOW_TRACKING_URI
is set, the providedapiroot
will be ignored. - If
MLFLOW_TRACKING_USERNAME
is set, the providedusername
will be ignored. - If
MLFLOW_TRACKING_PASSWORD
is set, the providedpassword
will be ignored.
These indications will be displayed as warnings.
Examples
mlf = MLFlow()
remote_url="https://<your-server>.cloud.databricks.com"; # address of your remote server
mlf = MLFlow(remote_url, headers=Dict("Authorization" => "Bearer <your-secret-token>"))
MLFlowClient.Tag
— TypeTag <: LoggingData
Generic tag type for MLFlow entities.
Fields
key::String
: The tag key.value::String
: The tag value.
MLFlowClient.ViewType
— TypeViewType
View type for ListExperiments query.
Members
ACTIVE_ONLY
: Default. Return only active experiments.DELETED_ONLY
: Return only deleted experiments.ALL
: Get all experiments.
MLFlowClient.RunStatus
— TypeRunStatus
Status of a run.
Members
RUNNING
: Run has been initiated.SCHEDULED
: Run is scheduled to run at a later time.FINISHED
: Run has completed.FAILED
: Run execution failed.KILLED
: Run killed by user.
MLFlowClient.ModelVersionStatus
— TypeModelVersionStatus
Members
PENDING_REGISTRATION
: Request to register a new model version is pending as server performs background tasks.FAILED_REGISTRATION
: Request to register a new model version has failed.READY
: Model version is ready for use.
MLFlowClient.Dataset
— TypeDataset
Represents a reference to data used for training, testing, or evaluation during the model development process.
Fields
name::String
: The name of the dataset.digest::String
: The digest of the dataset.source_type::String
: The type of the dataset source.source::String
: Source information for the dataset.schema::String
: The schema of the dataset. This field is optional.profile::String
: The profile of the dataset. This field is optional.
MLFlowClient.DatasetInput
— TypeDatasetInput
Represents a dataset and input tags.
Fields
tags::Array{Tag}
: A list of tags for the dataset input.dataset::Dataset
: The dataset being used as a run input.
MLFlowClient.FileInfo
— TypeFileInfo
Fields
path::String
: Path relative to the root artifact directory run.is_dir::Bool
: Whether the path is a directory.file_size::Int64
: Size in bytes. Unset for directories.
MLFlowClient.ModelVersion
— TypeModelVersion
Fields
name::String
: Unique name of the model.version::String
: Model’s version number.creation_timestamp::Int64
: Timestamp recorded when this model_version was created.last_updated_timestamp::Int64
: Timestamp recorded when metadata for this model_version was last updated.user_id::Union{String, Nothing}
: User that created this model_version.current_stage::String
: Current stage for this model_version.description::String
: Description of this model_version.source::String
: URI indicating the location of the source model artifacts, used when creating model_version.run_id::String
: MLflow run ID used when creating model_version, if source was generated by an experiment run stored in MLflow tracking server.status::ModelVersionStatus
: Current status of model_version.status_message::String
: Details on current status, if it is pending or failed.tags::Array{Tag}
: Additional metadata key-value pairs.run_link::String
: Direct link to the run that generated this version. This field is set at model version creation time only for model versions whose source run is from a tracking server that is different from the registry server.aliases::Array{String}
: Aliases pointing to this model_version.
MLFlowClient.RegisteredModel
— TypeRegisteredModel
Fields
name::String
: Unique name for the model.creation_timestamp::Int64
: Timestamp recorded when this RegisteredModel was created.last_updated_timestamp::Int64
: Timestamp recorded when metadata for this RegisteredModel was last updated.user_id::Union{String, Nothing}
: User that created this RegisteredModel.description::Union{String, Nothing}
: Description of this RegisteredModel.latest_versions::Array{ModelVersion}
: Collection of latest model versions for each stage. Only contains models with current READY status.tags::Array{Tag}
: Additional metadata key-value pairs.aliases::Array{RegisteredModelAlias}
: Aliases pointing to model versions associated with this RegisteredModel.
MLFlowClient.RegisteredModelAlias
— TypeRegisteredModelAlias
Alias for a registered model.
Fields
alias::String
: The name of the alias.version::String
: The model version number that the alias points to.
MLFlowClient.Experiment
— TypeExperiment
Fields
experiment_id::Integer
: Unique identifier for the experiment.name::String
: Human readable name that identifies the experiment.artifact_location::String
: Location where artifacts for the experiment are stored.lifecycle_stage::String
: Current life cycle stage of the experiment: “active” or “deleted”. Deleted experiments are not returned by APIs.last_update_time::Int64
: Last update time.creation_time::Int64
: Creation time.tags::Array{Tag}
: Additional metadata key-value pairs.
MLFlowClient.Run
— TypeRun
A single run.
Fields
info::RunInfo
: Metadata of the run.data::RunData
: Run data (metrics, params, and tags).inputs::RunInputs
: Run inputs.
MLFlowClient.Param
— TypeParam <: LoggingData
Param associated with a run.
Fields
key::String
: Key identifying this param.value::String
: Value associated with this param.
MLFlowClient.Metric
— TypeMetric <: LoggingData
Metric associated with a run, represented as a key-value pair.
Fields
key::String
: Key identifying this metric.value::Float64
: Value associated with this metric.timestamp::Int64
: The timestamp at which this metric was recorded.step::Union{Int64, Nothing}
: Step at which to log the metric.
MLFlowClient.RunData
— TypeRunInputs
Run data (metrics, params, and tags).
Fields
metrics::Array{Metric}
: Run metrics.params::Array{Param}
: Run parameters.tags::Array{Tag}
: Additional metadata key-value pairs.
MLFlowClient.RunInfo
— TypeRunInfo
Metadata of a single run.
Fields
run_id::String
: Unique identifier for the run.run_name::String
: The name of the run.experiment_id::String
: The experiment ID.status::RunStatus
: Current status of the run.start_time::Int64
: Unix timestamp of when the run started in milliseconds.end_time::Int64
: Unix timestamp of when the run ended in milliseconds.artifact_uri::String
: URI of the directory where artifacts should be uploaded. This can be a local path (starting with “/”), or a distributed file system (DFS) path, like s3://bucket/directory or dbfs:/my/directory. If not set, the local ./mlruns directory is chosen.lifecycle_stage::String
: Current life cycle stage of the experiment: "active" or "deleted".
MLFlowClient.RunInputs
— TypeRunInputs
Run inputs.
Fields
dataset_inputs::Array{DatasetInput}
: Dataset inputs to the Run.
MLFlowClient.User
— TypeUser
Fields
id::String
: User ID.username::String
: Username.is_admin::Bool
: Whether the user is an admin.experiment_permissions::Array{ExperimentPermission}
: All experiment permissions explicitly granted to the user.registered_model_permissions::Array{RegisteredModelPermission}
: All registered model explicitly granted to the user.
MLFlowClient.Permission
— TypePermission
Permission of a user to an experiment or a registered model.
Members
READ
: Can read.EDIT
: Can read and update.MANAGE
: Can read, update, delete and manage.NO_PERMISSIONS
: No permissions.
MLFlowClient.ExperimentPermission
— TypeExperimentPermission
Fields
experiment_id::String
:Experiment
id.user_id::String
:User
id.permission::Permission
:Permission
granted.
MLFlowClient.RegisteredModelPermission
— TypeRegisteredModelPermission
Fields
name::String
:RegisteredModel
name.user_id::String
:User
id.permission::Permission
:Permission
granted.